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ABSTRACT

A sequential fixed width confidence interval is proposed for

the log odds ratio of a 2 x 2 table. It is shown that the proposed

interval has asymptotically the correct coverage probability and is

asymptotically efficient uniformly in the unknown parameters.
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A SEQUENTIAL CONFIDENCE INTERVAL FOR THE ODDS RATIO

1. Introduction

For i - 1,2 let and fi n - Sn be respectively the

numbers of successes and failures in n i independent Bernoulli trials

with constant success probability p on each trial. A simple large

sample approximate confidence interval for the log odds ratio,

log (plq2/p2ql), is

(1) log(s ln1fS2 2n 2 f ln za[n 1 s ln fln + n2/S2n 2f2n2

where fo (2w)- if exp(-x 2 /2)dx = a/2 (Cox, 1970, p. 35). The conf1-
z

dence coefficient, 1-a, is asymptotically correct for fixed plp 2 as

min(nl,n 2 ) -) o.

These intervals have two defects when p1 and P2 may be near 0

or 1. On the one hand the rate of approach to normality can be very

slow, so that use of asymptotic theory is questionable. More

importantly, however, even with exact calculations, no fixed sample

size design will permit one to estimate the log odds ratio by an

interval of preassigned width in these boundary cases.

For one binomial population with success probability p,

Robbins and Siegmund (1974) proposed a sequential scheme for obtain-

ing approximately a confidence interval of preassigned width for

log(p/q). However, they do not consider the question of the uni-

formity of their procedure for p near 0 or 1, when a sequential pro-

cedure would presumably be of greatest value.
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The purpose of this paper is to consider the two population

analogue of the procedure of Robbins and Siegmund. The procedure

will be seen to attain asymptotically the required coverage prob-

ability and to be asymptotically efficient uniformly in 0O<pl, P2 <"

In Section 2 the one-population case is reviewed, and the

results of Robbins and Siegmund are appropriately strengthened to

provide the tools for the two-population problem. It is also shown

that Robbins and Siegmund's uncritical acceptance of Haldane's (1955)

modification of the empirical log odds ratio is inappropriate in the

sequential case.

Section 3 is concerned with the case of two populations.

Remarks about further extensions are collected In Section 4.
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2. One Population

Let xlx 2 ,.., be Independent with P(x1 .l1 -p,

P{xj =0- q - i - p (j l,2,... ). Let sn - x + .. + xn and

fn n - s . For large n log(sn/f n ) Is approximately normally dis-

tributed vith mean log (p/q) and variance l/(n pq) . Hence to find a

confidence interval for log(p/q) of preassigned width, or equivalently

in large samples to estimate log(p/q) by an estimator with preassigned

variance 1/c, Robbins and Siegmund (1974) define

(2) T - Inf{n: snf n >nc .

They propose estimating log(p/q) by

(3) lols 1 1O) los~Ts + !)/efT + )

which they show is asymptotically normally distributed with mean

log(p/q) and variance 1/c as c 4 m. The modification of the eampri-

cal log odds by adding 1/2 to numerator and denominator was

originally suggested by Haldane (1955) as a bias reducing device in

the fixed sample case.. Robbins and Siegmund also show that

ET - c/(pq) as c -0. This may be interpreted as showing that their

procedure is asymptotically efficient in the sense of requiring

asymptotically about the same number of observations as a fixed sam-

ple procedure chosen to be appropriate for a value pO which happens

to be the actual value of p.

In this section it is shown that the asymptotic normality ofI

(3) holds uniformly over 0 < p < 1. This is in marked contrast to

the fixed sample case, as was noted in the Introduction. It will
( - .



also be shown that the analogue of Haldane's bias reducing device in

this sequential context is to subtract-! from numerator and denomin-

ator of the empirical odds ratio. However, for simplicity and because

the appropriate modification for the two sample case is unknown, in

most of what follows only the unmodified empirical odds ratio is

considered.

The main result of this section is Theorem 1. Lemma 1, which

- , was obtained by Robbins and Siegmund (1974), is of interest in its

own right. It says that the asymptotic efficiency of (2) is uniform

in 0 < p < 1. Repeated use will be made of the algebraic identity

(4) Snfnln (q- p)(s n - np)+ npq - (sn- np)
2/n

Theorem 1. For the stopping rule T defined in (2), uniformly in

O<p< 1

lim Pc[log(sT/fT)- log(p/q)]< x) - O(x)
c-M

where

O(x) - exp(-u 2 /2)du

The proof utilizes the following lemmas. For the simple

proof of Lemma 1 based on (4), see Robbins and Siegmund (1974).

Lemum 1. c < pq ET < (c+ 1)/[l- (4 c) ].

A
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Lema 2. There exists a c0 such that for all c > c0 and all 0 < p < 1

2 2(pq) E(T- c/pq) < 4c

Leama 3. For each 0 < l < 1 and c> co, where c0 is defined as in

Lema 2,

P({T-mpTi >€C pq T) < K/ 2 c

where K does not depend on E or c.

Proof of Lemma 2. Squaring (4) gives

(Snfn/n- c)2 (q- p)2(Snp)2 + (pq)2 (n c/pq)2 + (a np)4/n2

+ 2((q- p)(s n - np)(pqn- c)- (q- p)(sn- np)3/n- (npq- c)(s n- rip) 2/n).

By the Schvarz inequality and Wald's second moment identity

IE((sT- pT)(T- c/pq))I < (pqET E(T- c/pq)2}h

Hence, since (STfT/T- c)2 < 1, Wald's second moment identity yields

1> (q- p)2 pq E(T)+ (pq) E(T- c/pq) 2pqjq- pj(pq E(T)E(T- c/pq)2)q

-21q-plpq ET - 2(pq)2 ET

or

(pq)2 E(T- c/pq) 2 2pqjq- plfpqEr E(T- c/pq)2)j+ pq(q- p)2 ST

< l+2pq ET

4.
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Taking square roots in this expression, then rearranging terms and

squaring yields

(pq)2 E(T- c/pq)
2 < f(pqET) h + (1 +2pq ET)h) 2

< 1 + 3pq ET < 1 + 3(c+ 1)/(l- 1/4c)

where the last inequality follows from Lemma 1. This completes the

proof.

Proof of Lemma 3. Let 0 < 6 < 1 and no - c/pq. By Lemma 2

PfIT- no0 > 6c/pq} < (8c)-2 (pq)2 E(T-n 0 ) < 4/6 2c

Hence, by Wald's lemma for the second moment and Lemma 1

PfIs T- pTI> pqTJ < 4/62c + P{jsT-PTI> CpqT, IT-no<6c/pq1

< 4/6 2 c + Pf js T - pTJ > c(1- 6)c) < 4/82c + E(sT - pT) 2/ A 2 (1- 6) 2 c2

< 4/62c + 2/fe 2 (1 - 6) 2 c)

Proof of Theorem 1. From the mean value theorem follows

Ch (log(s /f )log(p/q)] - c (sT-pT) /pqT+ c ((st-pT)/pqTI1 (.) -

n- n(a T pT)/(pq) T + n~ 0 [aT-pT)/(pq) TI (1lT)- 1]

where InT - pI < IT- 1 *T-PI , and as before no - c/pq. Hence it suf-

fices to show that uniformly in 0 < p < 1

1 6• 6
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liu Pln (s -pT)/(pq) T < x1 - 0(x)

and

pq/71T U -TIT) P

The second statement follows easily from Lemma 3, and the first may

be obtained by minor modifications in the standard proof of

Anscombe's theorem (e.g., U~nyi, 1966, p. 390).

1 An asymptotically more precise approximation to E(T) than

that provided by Lema 1, although one which is decidedly not uniform

in p, is

(5) pq ET - c + 1(p-q)2 + pq + o(1) (c W-)
2 2

which is valid for all p for which (p/q)2 is irrational. This result

follows easily from (4) and Theorem 2 of Lai and Siegmund (1979).

As an estimator of log(p/q), Haldane (1955) considered

logf(aSn +a)/(f n+a)) and showed by a Taylor series expansion that the

choice of a minimizing the asymptotic bias of this estimator is

1 ia = . The following heuristic calculation shows that a - is

appropriate in the present context. The machinery for justifying

this calculation may be found in Pollak and Siegmund (1975). It

should be noted that this result is appropriate for the stopping

rule T defined by (2). It does not carry over to the two-population

case discussed in Section 3.
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A two term Taylor series expansion gives

logf(sT +a)/(f T +a) ) - log(p/q) (s T - pT+a)/pT - (ft-qT+a)/qT

-(ST pT) 2/2(pT)2 + (fT -qT) 2/2(qT)2 + P(c- 1)

Since T P c/pq and hence Ef(sT-pT) 2/T21

S(pq-
1) 2 E{(sT - pT) 2} = (pqc 1)2 pq ET - (pq)2/c

one obtains

E(log{(s T +a)/(fT +a))] - log(p/q)

(6)
sT -pT)/ + c-1(q - p) (a1-

It is shown below that

E{(ST - pT)/T) c-l pq(q-p) (c w)

which shows that the right hand side of (6) is c-(q-p)(a
1

leading to the optimal choice a - 2"

Let T STfTIT - c. By (4) and Taylor expansions, one

obtains

1qp'c+~fq 1 -2

(a - pT)/T -(q -p)- (c + ){pqc - - (pqc- ) (T -c/pq)J + (pqc- 3 (T-clpq) 2 +...) (q-p)- pq + (q- p)- (aT - pT) 2 /T2

It is easy to see from (4) that c + ET - pq ET - pq + o(l); and

t
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Robbins and Siegmund (1974) have obtained E(T-c/pq)
2

(q- p)2 c/(pq)2 + 0(1). Hence by the asymptotic independence of

and c-3(T-c/pq) (Lai and Siegmund, 1977),

E{(sT-pT)/Tl - (q-p)-I (c +E& T{pqc- I - (pqc"I ) 2 . T /pq+ 1]

+ (pqc-)-(q.p) c/(pq) _ (q-p)-i pq + (pq)2/(q-p)c + o(c-1)

~-1
- c pq(q-p)

as claimed.
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3. Two Populations

Consider again the two population case described in the

introduction and suppose that observations are taken in pairs, one

from each population, so n 1 . n 2 - n, say. This restriction is

stronger than necessary, but it simplifies the subsequent analysis.

It is easy to modify the results to accommodate the case in which

observations are taken from the two populations in an arbitrary fixed

ratio. It seems possible to achieve a slight reduction in the total

expected sample size by choosing the sampling rates adaptively, but

the fairly small improvement seems not to be worth the considerable

complication in analysis.

The obvious analogue of the stopping rule (2) is (cf. (1))

(7) T -inffn: n( f1 + 1 < Al} .
lnlin 2n 2n c

The main results of this section are Theorems 2 and 3, which corre-

spond respectively to Lemma 1 and Theorem 1 in the single population

case. Theorem 2 shows that T defined by (7) is uniformly asympto-

tically efficient and Theorem 3 shows that it asymptotically provides

the correct coverage probability uniformly in p1,p2.

Theorem 2. Uniformly in 0 < p 1 9P2 < 1,

ET -c{(p 1q 1 ) + (P2 q2)_
11 (c -I. CO)

The inequality in one direction is a consequence of the

following trivial lemma.

10



Lemma 4. For all O < plP 2 < 1 and all c

ET > c((pq)-1 + ( q-2

Proof. From (4), Wald's identity and Jensen's inequality one obtains

C 1 > EfT(1/s lTf 1T + /s 2Tf2T )) > (E(sTf1T/T)1'

+ {E(s 2Tf2T/T)} 1- - {plql RT-E[(SIT- PlT) 2 /T] 1- 1

+ {p 2 q2 ET- E[ (s 2 T- P2T) 2 /T11 - 1 > (ET)-1 (p1q 1 )- +(p 2q 2 )- 1 1

To obtain asymptotic upper bounds on E(T) it is useful to

define (cf. (2))

Ti(c) - inf£n :n/sin f < i1/c

Since sf i/n increases with n, for all a > 1 and > 1 with
in

(8) T < max(T (c), T2 (Bc))

In what follows C - (plql + p2q2)/p2q2 and B " (piql + p2 q 2)/piqi, so

(9) C/plql  /p 2q2  (pl+p 2q2) /(plqP 2q2) - (plql)-l + (p 2q2)'

With these fixed values of CL and B there is no ambiguity in writing

T I for TI(OiC) and T2 for T2(Bc).

It is now possible to complete the proof of Theorem 2.

Obviously from (8)

111



(10) E(T) < Efmax(T1 ,T2)} - f T2dP +1 T dP-- {T<T2) fT <T 1} 1
1-l:ST2 [T2 <T1

Let e > 0 be arbitrary. Then

(11) f TdP<f + T de
(T 2T:Oc(+)/ T c _/<T I 2 {T< q~d (+4 q~
1-<2 - 2' T2  c(I+)/P~q2 1 T2 > c(14e)/p 2q 2 }

-< (p 2 q 2 )-1 Oc(+E)PfT1 <T 2 } + (p 2 q 2 )-1 Oc P{T 2 >(p 2 q 2 )-1 c(l+)}

+ f I12 (p q ) -1 OcIdP

fT T2>(P2 q2)_l ac(l+C)}lT2 (2q2)- cd

By Lemma 2

(p2q2) c P{T 2 >(p 2 q 2 )-l Oc(l+)} < 4(p 2 q 2 )- l - 2

and by the Schwarz inequality and Lemma 2 again

I T2 -((p2 q2 )
1 OcjdP (p2q2 )

2 Elp 2q2T2-Ocj
2 P{T 2 > (p 2 q 2 )-1 8c(l 1]

IT2 >(p2q2)- oc(l+e)}

< 4(p 2 q 2 ) -

Putting these inequalities together with (9), (10), and (11) yields

ET < cf(plql)-I + (p2q2 )-11(1 + e + 8le2c)

which completes the proof, as c is arbitrarily small.

Theorem 3. For T defined by (7), uniformly in 0 < p1 <p2  1

lim P{c [log(s f2/s2fT)- log(plq 2 /p2ql)]x) W(x)

* - ' 12
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With the help of Lema 5 below, the proof of Theorem 3 may be

carried out along the same lines as the proof of Theorem I.

Lmma 5. Let p - f(p 1 q1 )-1 + (P 2 q2 )-)-. For all c > 0 and all

large c (not depending on E)

2
P( IT- c I > cc) < 8/c

Proof. The proof of Theorem 2 shows that

q PfT>c(l+c)1-l} - P(T1 < T2, T2 > (p2q2)- Oc(l+)

+ PfT2 <T1 , T,> (plql)-1 
ac(l+ )}<4/cc 

2

The same upper bound for P{T< c(l- C)I
-i } follows by a similar

calculation and the observation that T > uin(T1((ac), T2 ( c)).

I
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4. Remarks

(a) Unpublished numerical computations of H. Levene in the one-

sample case show that the asymptotic theory of Section 2 provides

good approximations for c > 10 and reasonable ones for c as small as

3. It seems likely that similar results hold for two populations.

(b) The heuristic principle which suggests the stopping rules (2)

and (7) is quite common in the literature of fixed precision estima-

tion (e.g., Anscombe, (1953)), and it leads to reasonable stopping

rules for more complicated log linear models. However, the uniform

asymptotic theory developed here seems to require new ideas for very

simple extensions.

One important generalization is a set of 2 x 2 tables with

equal odds ratios. Appropriate asymptotic theory might involve a

large number of observations from each of a small number of tables or

a large number of tables.

Another interesting variation is log linear regression. In

this case one might also wish to consider sequential design in

selecting values of the independent variable.

14
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